Chapter 3

Statics

3.1 Basic Concepts
The study of statics is based on six fundamental principles. These are

¢ Newton’s three fundamental laws,
e parallelogram law for the addition of forces,
e principle of transmissibility,

e Newton’s law of gravitation.

For details see [1], [2], [3].

3.1.1 Force

A force represents the action of one body on another. This action can be realized
by actual contact or by action at a distance (e.g. gravitational force). A force is
represented bywaector. It is characterized by its magnitude, its point of action, and
its direction. We should distinguish three kinds of vectors, naradige vectora

fixed vectorand a vectobound to its line of actionAll of these vectors have their
place in mechanics. We will deal with rigid body mechanics in this chapter.

The addition of two forces acting at the same point of action is governed by
the parallelogram law This states that two forces may be replaced by a single
force (called theesultan) obtained as the diagonal of the parallelogram the sides
of which are the given forces (see Fig. 3.1).

The following is valid

Fy = \/F2 + F} +2F Fycos o, (3.1)
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Figure 3.1: Parallelogram law.
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Consider a forc& acting at the origin of the Cartesian (rectangular and right-

handed) coordinate system (see Fig. 3.2).
The forceF may be resolved into thremomponents

tan o, = (3.2)
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Figure 3.2: Decomposition of a force into three components.

F,=Fcosa, F,=Fcosf, F,=Fcosy (3.3)

F=|F|=,/F2+F2+F? (3.4)

Introducing the unit vectorg j, andk directed respectively along, y, andz
axes, we may expressin the form

F=Fi+F,j+F.k (3.5)
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or

F=|F, | =[F,F,F]" (3.6)

If the componentd,, F;,, F, of a forceF are given thetthe magnitudé" of the
force is obtained from (3.4) arttie direction cosineare

F, F, F,
cosa = —, cos 3 = Fy’ oSy = — (3.7)

F

Givenn concurrent forceswe may determine the resultdnt by summing their
rectangular components:

Frx:ZExa Fry:ZEya Frz:ZEz (38)
i—1 i—1 i—1
F.=F,i+F,j+F.k (3.9)
FI‘I FI‘ Frz
COS iy = o cos fy = ﬁ, COS Yy = a (3.10)

3.1.2 Moment of a force about a point

The moment of a force about a poi@ is defined as th&ector product(cross
product)
Mo =r x F (3.11)

wherer = zi + yj + zk is the radius vectorposition vector) drawn frond) to
the point of application A of the forcE, andF = F,i+ F,j + F, k is the force
vector acting on A. Both vectors are expressed by their comporiensz) and
(F,, F,, F,), respectively, in Cartesian coordinate system.

Denoting byy the angle between andF, we find that the magnitude of the
moment ofF about O may be expressed as

Mo =rFsinp=Fd (3.12)

whered is the perpendicular distance from O to the line of actioil’ of
In matrix calculus (and in Matlab as well) we use the expression

Mo =tF (3.13)
where
0 —z gy
tr=| 2 0 —x (3.14)
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Figure 3.3: Moment of the forcEé about the point O.

is theskew-symmetric matrbepresentation of the vecterand
F=[F,F,F]" (3.15)

is (3, 1) - matrix representation of the vectBr
The Cartesian components of the monieh of a forceF can be found to be

M, 0 —2 y F, yF, — 2F,
Mo=| M, | = z 0 —x F, | = | zF, —oF, (3.16)
M, -y 0 F, zF, —yF,
The magnitude oMy is
Mo = \/Mg + M2+ M2 (3.17)
The line of action of the mome, is determined by direction cosines
M, M, M,
COS Qi = S cos By = VZ, CoS Y = A (3.18)

whereay, Sy, yum are angles between the line of action and coordinate axes,
respectively.
In a more general case of the moment about an arbitrary point B of a Force
applied at A, we have
Mg =r,g F (3.19)
wherer , 5 is skew-symmetric matrix representation of the vector

rAgp =Trs —I'p (3.20)
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Figure 3.4: Moment of the force about the point B.

Varignon'’s theorem

The moment about a given point O of the resultant of several concurrent forces is
equal to the sum of the moments of the particular forces about the same point. This
is

rxF+rxFy+-- =rx (F +Fy+...) (3.21)

The theorem follows from distributive property of vector product.

3.2 Moment of a force about an axis

The moment of a forcE about an axi9 is defined as the projectianB on p of
the momeniM, (see Fig. 3.5).

DenotingA the unit vector of p, the moment,, of force F about an axis p can
be expressed asalar product(dot product)

M, =X.M, (3.22)

or asthe mixed triple producof the unit vector), the position vector, and the
forceF:
M,=X.(rxF) (3.23)

Using the determinant form for the mixed triple product, we have the magnitude

of the moment
Az Ay A
My=|2 vy =z (3.24)
F, F, F,
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Figure 3.5: Moment of the forcE about the axis p.

where A, Ay, A\, are direction cosines of axis p
T, 2 are components of
F,,F,, F, are components df

Exercise 3.2.1 Sample problem force F' =40 N is applied at a poitl (zx; yu;

2v) = M(3;2;4) [m] (see Fig. 3.6). The liner of action of the forcé- is described
by direction anglesar; fr; vr) = (80°;60°; acute angle). An axis a which passes
through the origin O has direction anglgs,; 5.;v.) = (60°;100°; acute angle).
Determine:

e The momeniM,, of the forceF about O.

e The moments\/,, M,,, and M, of the forceF about axes, y, andz, respec-
tively.

e The momeniM, of the forceF about a axis.

Notice: An acute angle is such an angle for which the condition< o < 90° is
valid.

Solution

We determine the angte- first. Since the expression

2 2 2
cos ap + cos B +cosyp = 1
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Figure 3.6: Exercise 3.2.1. Moment of the fofe@about the axis a.

is valid for any set of direction cosines, we have

COSYFp = —1—\/1 —cos? ap — cos? Bp = V1 —0.17362 — 0.52 = 0.848

According to the definition of the momeM,, of the forceF, we may write

[ 0 —zum yM'I[FcosaF'l_

MO:I'MXF:f'MF: ZM 0 —Tn FCOSﬁF =
\‘ —Ym Ty 0 J [ F COSYp J
0 —4 2 40 cos 33% —12.16 Mo,
= 4 0 -3 40 cos % = | —74.00 | = | Mo,
-2 3 0 40 0.848 46.16 Mo,

Notice: Matlab works with radians and not with degrees.
The magnitude oM is

Mo = \/Moﬁ + Mo,? + Mo.” = \/(—12.16)2 + (—74)% + (46.16)2 = 88.06 Nm
The direction cosines d¥1 are

B Mo, B —12.16 — _0.138 = og°
COSpr = MO = 33.06 = . N
Mo, —T4 ,
= =——=-0.84 = 147°
cos Bur o 53.06 0.8 Bt 7
Mo, 46.16 )
= = —— = 05 e — 5803(),
COSIM = T T 88.06 v

As the componentd/,,, Mo,, and My, of Mg are equal to the moments
M,, M,, andM, of F aboutz, y, andz axes respectively, the following is valid:

Mx = MO:va My = MOya Mz = MOz
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According to the definition of the momentf, of the forceF about an axis a, we
have
M, = A" Mo

where the unit vectoh of a is

A = [0S @y, €OS B, cOS Y] "

ASs

COS Yy = +\/1 — cos? v, — cos? 3, = 0.8484
we conclude that
—12.16

M, =1[0.5, 0.1736, 0.8484] | —74.00 | = 45.92 Nm
46.16

Using MATLAB the solution of the problem is much more convenient. The
program for the purpose is calleshoment.m. It can be found in program package.

Exercise 3.2.2 Moment of a forcéA force F' =50 N is applied at a point M(8;4,;4)
[m] and its line of action is described by direction anglég°; 60°; acute angle).
Determine the moment¥,, M,, and M, of the forceF about the axes, y, andz
respectively and the momeNi, about the axis a passing through the point A(0;2;2)
and having direction anglé80°; 0°; acute angle).

Y

/a(aa’ﬂaﬂya)

A(xA7 yA’ ZA) M(xMa yM’ ZM)

F(aF’ﬁF’yF)

z

Figure 3.7: Exercise 3.2.2. Moment of the fofe@about the axis a.

Solution
M, =41.4Nm, M, =-182.8 Nm, M, =100 Nm, M, =-98.47 Nm
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Exercise 3.2.3 Moment of a forcéA force F' = 50 N is applied at a point M(2;3;1)
[m] and its line of action is described by direction anglég°; 60°; acute angle).
The axis a passes through the origin O and liegjiplane having the angle= 30°
with y axis. Determine

e The momeniM, of the forceF about the origin O.

e The moments\/,, M,, and M, of the forceF about the axes, y, andz re-
spectively.

e The momentV/, of the forceF about the axsis a.

al(y, z)

/ F(ap, ﬂp)’p)

M(xM7 yM’ ZM)

\O\%

Figure 3.8: Exercise 3.2.3. Moment of the fofe@about the axis a.

Solution
M, =81.05 Nm, My =-45.7Nm, M, =-25Nm, My =96.34 Nm,
M, =-52.07 Nm

Exercise 3.2.4 Moment of a forcé\ force F' =40 N is applied at a point M(4;3;-2)
[m] and its line of action is described by direction ang(@8°; 90°; acute angle).
Determine the momer¥l, of the forceF about the point A(-1;3;6) [m] and the
moment)/, of the forceF about the axis a passing through the point A and having
direction angle$60°; 80°; acute angle).

Solution
Mp, =0Nm, My, =-377.13 Nm, My, =0 Nm, M, =-65.49 Nm

Exercise 3.2.5 Moment of a forceA tube is welded to the vertical plate at the
point A. The tube is loaded by a forééat the point D. The line of action of the force
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Figure 3.9: Exercise 3.2.4. Moment of the fofe@about the axis a.

F has an anglg with y-axis and an angle with z-axis. Determine the moment of
the forceF about the point A. Further determine the moméfit aboutz-axis and
the moment\/z about BC axis of the same for&é How many solutions does the
task have? Itis known that F = 200 N;= 60°;v = 80°;a = 0.2m;b = 0.4m;c =
0.8 m.

Figure 3.10: Exercise 3.2.5. Moment of the fofee

Solution
My =152.2 Nm, M, = —66.1 Nm, Mpc =135.75 Nm

Exercise 3.2.6 Moment of a forcédbetermine the moment of the force F =500 N
about the axis AC. The angte = 30°, A(5;0;0), C(0;12;0), E(0;0;20), AB = 6.5,
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BD = 10 (all dimensions in m).

Figure 3.11: Exercise 3.2.6. Moment of a fofee

Solution
Mac =4510 Nm

Exercise 3.2.7 Tangent forceA force 7' = 60 N acts at a tangent of a helix (see
Fig.3.12). Find a generic expression for mometts M,, and M, of the forceT
aboutz, y, andz axes respectively as a function of angleNumerically compute
the magnitudes of these moments foe= 750° knowing that the radius of the helix
isr = 10 m and the pitch angle is = 30°. Write a MATLAB program which can
be used to calculate the above moments and use it for creating plots of moments
values versus angle< ¢ < 6.

Solution
M, =2222 Nm, M, =-519.6 Nm, M, = 3248 Nm

3.2.1 Couples of forces

Two forcesF and —F having the same magnitude, parallel lines of action, and
opposite sense are said to form a couple of forces, shodbuple

MomentC of a coupleis a vector perpendicular to the plane of the couple and
equal in magnitude to the product of the common magnitkid# the forces and
the perpendicular distandebetween their lines of action (see Fig. 3.13).

It is called acouple vectar VectorC is a free vector which may be attached to
the origin O (Fig. 3.13) or to any other point.
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Figure 3.13: Couple of forces.

3.2.2 Principle of transmissibility

The effect of an external force on a rigid body remains unchanged if that force is
moved along its line of action.
Warning: This principle is not valid for deformable bodies.

3.2.3 Force systems
Force systems are categorized as follows:

e The most general spatial force system consists of forces the lines of action of
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which are not parallel to any plane, not all of them are concurrent, and not all
of them are parallel.

e The spatial system of parallel forces consists of forces the lines of action of
which are all parallel but not all of them lie in one plane.

e The spatial system of concurrent forces consists of forces the lines of action
of which intersect at a point but not all of them lie in one plane.

e The most general coplanar force system consists of forces the lines of action
of which lie in one plane, not all of them are concurrent, and not all of them
are parallel.

e The coplanar system of parallel forces consists of forces the lines of action of
which lie in one plane and all of them are parallel.

e The coplanar system of concurrent forces consists of forces the lines of action
of which lie in one plane and all of them intersect at a point.

e The collinear force system (the simplest) consists of forces the lines of action
of which lie on a common line.

3.2.4 Equivalence of two systems of forces

Any force F acting at a point A of a rigid body may be replacedaforce-couple
systemat an arbitrary point O. Force-couple system consists of the Bragplied
at O and a couple momefit, equal to the momen¥l, about O of the forcd" in
its original position (Fig. 3.14).

z F z

I
=

X X

Figure 3.14: Force-couple system.

It follows that any system of forces may be reduced to a force-couple system at
a given point O. The resulting force-couple system has the same effect on a given
rigid body as the original system of forces (Fig. 3.15).
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Figure 3.15: Equivalence of two systems of forces.

3.2.5 Equilibrium of force systems

The necessary and sufficient conditions éguilibrium of a force systerare that
the resultant forc&',. and the resultant coup{&, be zero vectors:

F, =0, C.=0 (3.25)
The two equations are equivalent to the system of 6 scalar equations:

Fre=0, Fy=0, F.=0 (3.26)
Coo=0, Cy=0, Cp=0 (3.27)

A review of the number and the type of equations ensure equilibrium of a par-
ticular force system is shown in Table 3.1.

Remarks:

e An equilibrium equation containing components of forces is catleahpo-
nent force equilibrium equations

¢ An equilibrium equation containing components of moments is caited-
ponent moment equilibrium equations

e Generally any component force equilibrium equation may be substituted by
a component moment equilibrium equation. Care must be taken in choice of
an axis or a point for the moment equation. For details consult text books [1],

2], [3].
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Force system

Equations

of equilibrium

Remarks

Spatial general Y Fiz=0 > F,, is algebraic sum af components
> Fiy=0 of the forces; similarly for other axes
> My, =0 | > M, is algebraic sum of the moments
> M;,, =0 | ofthe forces of the system abatHaxis;
> M;, =0 similarly for other axes

Spatial parallel Y. Fi.=0 forces line of action are paralel teaxis
> My =0

Spatial concurrent > Fip =0
> Fy =0

Coplanar Y Fi, =0 | forces lie inzy plane
> Fy =0

Coplanar parallel Y. Fy, =0 forces lie inzy plane
> M;, =0 lines of action are parallel tg-axis

Coplanar concurrent > F;, =0 forces lie inzy plane
> Fiy =0

Collinear S F, =0 | line of action isz-axis

Table 3.1: Equilibrium conditions.
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3.3 Equilibrium of a particle

The particle is a model of a real body. The word "particle” does not imply that the
particle is a small body. Modelling a body as patrticle is equivalent to the assumption
that all forces applied on body act at the same point. This assumption is acceptable
in many practical engineering applications. Tiee particleand theconstrained
particle should be distinquished. The free particle (such as a planet or a bullet) are
rarely encountered in a static equilibrium problems. Most particles are constrained.
The first step when solving the equilibrium is "to free" the particle and to sketch so
calledfree- body diagramTo free a particle means to isolate it from other bodies
which the particle is originally joined or in touch with. All these other bodies must
be replaced by forces which they act on the particle in question. After "freeing”
the particle we have concurrent system of forces and we solve the problem of equi-
librium of this system of forces according to rules described in section 3.2.5. We
usually use two component equations of equilibrium in planar (2D) case and three
component equations of equlibrium in spatial (3D) case.

Exercise 3.3.1 Sample problenfind a distancé determining the equilibrium po-
sition of a collar on a smooth rod (see Fig. 3.16). The free length of a spring is
ly = 0.04 m, the stiffness of a spring is= 1000 Nm~!, G =60 N,a = 30°.

Figure 3.16: Exercise 3.3.1.Equilibrium position of the collar

Solution
A free-body diagram of the collar is on Fig. 3.16 where an auxiliary angkein-
troduced. As the collar is supposed to be small, all forces have a common point of
action. Therefore we use two independent equilibrium equations for their equilib-
rium. These are
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G cosaa— S cosf =
Ssinf—Gsina— N = 0

According to Fig. 3.16 we can express the value of the f@ae the spring as a
function ofd:
S=k&=k(VI +d*—1p)
The functioncos 5 may be expressed as a functionrabo:
_ 4
Vie® + d?

Substituting the above expressions into the first of equlibrium equations (the second
serves to determin®’), we have

Gcosa—k(\/l02+d2—lo)L =0
Vip® + d?

cos 3 =

and after some manipulations

klod = (kd— G cosa) VIp? + d?

This equation says that fdr> 0 only such al has sense which fulfills the inequality
kd— G cosa >0

this means
d > 0.0519m

Further manipulation with an equilibrium equation leads to the result
k*d* —2Gk cosa-d® + G* cos*a-d*> —2G kly’cosa - d+ G? cos>a- 12 =0

We have the equation of the fourth degree now. We solve it using Matlab function
roots as follows:

% s211.m

clear all
G=60;k=1000;10=0.04;alpha=30*pi/180;
calfa=cos(alpha);
c(1)=k*2;c(2)=-2*G*k*calfa;c(3)=G"2*calfa"2;
c(4)=-2*G*k*I0"2*calfa;
c(5)=G"2*calfa"2*10"2;

d=roots(c)
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The program supplies four roots from which omly= 0.0884 m makes sense.
Explain why!

Exercise 3.3.2 Equilibrium of a weightFind a value of a forcé for equilibrium
of a particle shown on Fig. 3.17 as a functiorwofA numerical value of the force
compute forz., = 0.04 m. Free lengths of springs ag = 0.05 cm andy, = 0.08
m, stifnesses ark, = 5000 Nm~! andk, = 8000 Nm~!. WeightG = 40 N. No
friction is considered.

Figure 3.17: Exercise 3.3.2. Equilibrium of the weight

Solution
P=776N

Exercise 3.3.3 Equilibrium of a weightFind z., such that the equilibrium of the
weight W according to Fig. 3.18 is assured. Distahee 1 m, distancé: = 0.4 m,
weights arelV = 100 N, W; = 500 N, W5 = 250 N.

Solution
Teqg = 0.2M

Exercise 3.3.4 Equilibrium position of a particle Find z., such that the equilib-
rium position of a particle which follows a smooth curye= & 22 (see Fig. 3.19)
is assured. Horizontal forcE = 60 N, vertical forceG = 100 N. Dimensions are
a=0.06m,b=0.03m.

Solution
Teq = 0.036 M
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Figure 3.18: Exercise 3.3.3. Equilibrium of the weight

""U

Figure 3.19: Exercise 3.3.4. Equilibrium position of a particle

Exercise 3.3.5 Equilibrium position of a particle Find z., such that the equilib-
rium position of a particle located on the end of a massless bar (see Fig. 3.20) is
assured. Horizontal forcE = 63 N, vertical forceG = 90 N. The length of the bar
isl=0.08 m.

Solution
Teq = 0.046 M

Exercise 3.3.6 Equilibrium of a tripod Three bars are connected in such a way
that they form a tripod (see Fig. 3.21). A forEects at the common poid,. Find

the forces in the bars. The coordinates of particular points are (in&p):; 0; 7),
Ay(2.2;0;2.5), A3(10;0;7.5), A4(4; 5.5;6), A5(12;0; 0). The magnitude of the force
F =500 N.
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Figure 3.21: Exercise 3.3.6. Equilibrium of a tripod

Solution
We take the common poirt, as a particle. Three forces from bars and the férce
act on it. The lines of actions of bar forces lie in the bars’ axes.

First of all we draw the free-body diagram supposing tension forces in bars (see
Fig. 3.21).

Direction cosines of anglesy(, 5;, vi, ¢ = 1,2,3,5) of lines of action of the
particular forces are

L= (za1 — a0)? + (Yar — Yaa)? + (2a1 — 2a4)2 = V42 + 5.52 £ 12 = 6.87cm

Tl — Tag 4 YAl — Yas  —9.D
= = = —0.5819 = = = —0.8002
cosan L 6.87 Pocoshhi =" 687
— 1
cos 7y = Al ] M 55 = (0.1455
1 .

ly = \/(IAQ — -TA4)2 + (yAg — yA4)2 + (ZAQ — ZA4)2 = \/1.52 +5.52+3.52 =6.69cm
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Exercise 3.3.7 Equilibrium of a tripod The rope (see Fig. 3.22) goes through fric-
tionless collar connected to three barsA,, A, A4, A3A,. The particle at the end
of the rope has weight = 50 N. Find the forces in bars. The coordinates of par-
ticular points are (in mA;(0.02;0;0), A2(0.02;0.02;0.07), A3(0.08;0.01;0.03),
A4(0.05;0.07;0.05), A5(0; 0.07; 0). Check your result using Matlab programipod.m

Figure 3.22: Exercise 3.3.7. Equilibrium of a tripod

Solution
Fy=-76.7N, F; = —6.3N, F; =16.4N

Exercise 3.3.8 Equilibrium of a tripod Three barsA; A4, A;Ay, A3A, are con-
nected in the point\; (see Fig. 3.23). The forcé& = 60 N acts onA, parallel
to z axis. Find the forces at bars. The coordinates of particular points are (in m)
A;(0.02;0;0.08), A5(0.08;0;0.09), A3(0.05;0;0.03), A4(0.04;0.03;0.55). Check
your result using Matlab prograsaipod.m

Solution
Fy =479N, F, = —55.5N, F3 = -7.32N

Exercise 3.3.9 Equilibrium of a consoleSystem of three bars forming a console
support a weighG = 60 N located inA, (see Fig. 3.24). Find the forces at bars.
The coordinates of particular points are (in m); (0; 0.04; —0.02), A,(0; 0.07;0),
A3(0;0.04;0.04), A4(0.07;0.04; 0). Check your result using Matlab programipod.m

Solution
F, =—-971N, F, = —152.3 N, F5 = —53.8 N
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Figure 3.23: Equilibrium of a tripod

<

)

z

Figure 3.24: Exercise 3.3.9. Equilibrium of a console

Exercise 3.3.10 Equilibrium of a three-bar structure The weightG = 600 N
hangs on three ropes (see Fig. 3.25). Find the forces in the ropes. The coordinates of
particular points are (in m)A(0.01; —0.01; 0), B(—0.02; —0.02;0), C(0; 0.02; 0),
D(0;0; —0.02). Check your result using Matlab prograsripod.m
Solution
Fx=294N, Fg = 207N, Fe = 339N

3.4 Equilibrium of a rigid body in a plane

A rigid body is said to be in equilibrium when the sum of external forces (active
and reactive too) acting on it forms a system equivalent to zero. For a body this
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G

Figure 3.25: Exercise 3.3.9. Equilibrium of a three-bar structure

generally means that

i

These two vector equations may be reduced in the planar case (the basic plane being
x,y) to the following three scalar equations written in rectangular components of
each force and each moment:

The equations may be used to determine unknown forces applied to the rigid body
in plane or unknown reactions exerted by its support.

These equations may be solved for just three unknowns. If they involve more
than three unknowns the body is said tostetically indeterminatelf they involve
fewer than three unknowns, the body is said tgh#ially constrained

The statement above is not valid absolutely. The solvability of the three equa-
tions depends on the properties of the system matrix.

Generally speaking the problem of the equilibrium of a body is always trans-
formed to the problem of the equilibrium of the system of forces that act on the
body. To identify all such forces tHeee-body diagranis essential.

Exercise 3.4.1 Sample problenDetermine the reactions at points B, C, D as
functions of the angle € (—2; Z) (see Fig. 3.26). The rectangular shape body is

loaded by the force$” = 600 N, @ = 800 N and by couplel/ = 20 Nm. The
lengtha = 0.3 m.
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Solution
The free-body diagram is in Fig. 3.26. The equilibrium equations are

> Fip: Rc+ Rpcosa = —F cosf
Y Fy: S—Rpsina = @Q+ Fsinf
S Mg : —3aS = M—-2aQ+ Fcosffa —4aF sinf

or in matrix form
IR B I Q4 F ing 1
[—3@ 0 0 J [RDJ [M—2aQ+FacosB—4aninBJ

The numerical solution of the above equation is accomplished $828.m file.
We have plots of all reactions as a result. Boe 30° they are:S = Rp =
737.9N, Rc=107.6 N, Rp = —724.2N

a A M
S C
— JE °:E
a ﬁBa Q 2a a
\f

Figure 3.26: Exercise 3.4.1. Equilibrium of a body

Exercise 3.4.2 Equilibrium position of a beamDetermine the free lengthy of

a spring the stiffness of which & = 50000Nm~'. The purpose of the spring is

to level the beam loading according to Fig. 3.27. It is known that 600 N,

M =12Nm, w, = 4000Nm~!, a = 0.2 m. Determine the reaction dtas well.
Solution

Ry =397N, [p=0.112m

Exercise 3.4.3 Equilibrium position of a plateWhat is the stiffness of the spring
on Fig. 3.28 to level the plate the weight of whiclds= 150 N? The free length of
the spring i a = 0.3 m.
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Figure 3.27: Exercise 3.4.2. Equilibrium position of a beam
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Figure 3.28: Exercise 3.4.3. Equilibrium position of a plate

Solution
k = 4736 Nm™!

Exercise 3.4.4 Equilibrium of a carriage The weight of the carriage in Fig. 3.29
is Gy = 4500 N, the weight of the load i&'s = 2500 N. The lenghtz = 0.6 m. The
reaction force on the front axle IS; and the reaction force on the rear axle\is
The distance between the front axle and the line of actial.,ak d. What are the
functionsN¢(d) and N, (d) for d € (a;2a)? Find the values olN¢(d) and Ny4(d) for
d=15a.

Solution
Ny =6700N, N, =300N

Exercise 3.4.5 Equilibrium of a craneThe crane in Fig. 3.30 is characterized by
G =10kN, a=12m, b=1m, ¢=8m, d=2m. Determine the minimum
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Figure 3.29: Exercise 3.4.4. Equilibrium of a carriage

counterweightG',,,;, for the crane not to lose its stability with, = 0. What
is the maximum weightis,.,., for the crane not to lose its stability withi; .. ?
Investigate the influence of the positionf the freightG, on the magnitudes of the
reaction forces. Lengthchanges in the range from 4 to 8 m.

Hint: The crane loses its stability if eithéf; < 0 or N, < 0.

d c
b
==
v G, S ¥G
f G,
N, [F— N,
a

Figure 3.30: Exercise 3.4.5. Equilibrium of a crane

Solution
Gimin = 1538 N, Gomax = 3475 N
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3.5 Equilibrium of a rigid body in space

Arigid body is said to be in equilibrium when the external forces (active and reactive
too) acting on it forms a system equivalent to zero.
For a body in space we have

These two vector equations are equivalent to the following six scalar equations
written in rectangular components of each force and each moment:

Y Fu=0, Y Fy=0 ) F.=0
> My=0, ) My=0, Y Mz.=0

The equations may be used to determine unknown forces applied to the rigid
body in space or unknown reactions exerted by its support.

These equations may be solved for just six unknowns. If they involve more than
six unknowns the body is said to kaatically indeterminatelf they involve fewer
than six unknowns, the body is said toetially constrained

The statement above is not valid absolutely. The solvability of the six equations
depends on the properties of the system matrix.

Generally speaking the problem of the equilibrium of a body is always trans-
formed to the problem of the equilibrium of the system of forces that act on the
body. To identify all such forces tHfeee-body diagranms essential.

From what has been said it follows that the equilibrium of a particular force
system is always simpler than the general case. For example the equilibrium of a
body in a plane we may solve using three scalar equations only.

Exercise 3.5.1 Sample problemThe plate weights 200 N and is supported ac-
cording to Fig. 3.31. Itis loaded by the for€ethe line of action of which has the
angled = 60° with the horizontal plane. Determine the of reactidtys Ry and the
forceS inabars. Itis known that = 0.3 m ands = 45°.

Solution
The free body diagram is shown in Fig. 3.31. The components of the Foace:

F, = —F cosd cose
F, = —Fsind
F, = F cosdsine
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Figure 3.31: Exercise 3.5.1. Equilibrium of a body

The equilibrium of the plate demands the fulfilment of six scalar equations. It is
advantageous to use the following set of equations:

> My - —3aRpy,+15aG —15aF,+025aF,—-25aS = 0
YoMy, : 3aRp; +1.5aF, —2aF, 0
S M, : —aG+2aS—-0250aF,+02aF, 0
> My 3aRa,—15aG+05aS+15aF,+025aF, = 0
> My —3aRa; —15aF,—2aF, = 0
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In matrix form we have

0010 0 0 Ra, [ —F,
0 000 —3 —25 | | Ra, ~1.5G+15F, —0.25F,
0 003 0 0 Ry. | | -15F, +2F,
0000 0 2 Re. | | G+0.25F, —2F,
0 300 0 05 Rs, 1.5G —1.5F, — 0.25F,

| 3000 0 0 | |S | |15E+2F |

The set of six linear algebraic equation we solve using Matlals8#7.m.
Result:
Rap = =295 N, Rpy = 216.6 N, Ry, = —176.8 N, Ry = 281.1 N, Rp, =
206.2 N, R, = —94.5 N, Rg = 266.9N, S = 510.9N

Exercise 3.5.2 Equilibrium of a cam shaft The cam shaft in Fig. 3.32 is loaded
by the forces) = 4000 N, G = 400 N, F' = 40 kN. It is known thatz = 100 mm,

b = 600 mm, T /T, = 5. Determine the reactioR 4, Ry and the magnitudes of the
forcesT; andTs.

1/5a
T, o
a
A B
[NN] [NN]
N l NN
o

Figure 3.32: Exercise 3.5.2. Equilibrium of a cam shaft

Solution
R, = 0N, RAy = —946.2 N, Ry, = —860 N, Ry = 12786 N, RBy =4349.4 N,
Rp, = —581.9N, Rg = 43881 N, 77 = 10000 N, 75 = 2000 N

Exercise 3.5.3 Equilibrium of a semiaxleOne half of a car axle is loaded by the
normal componen¥ = 6 kN of the reaction, by the tangent compon&nt= 600 N
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of the reaction and by, = 300 N transverse component of the reaction. It is known
thata = 100 mm,r = 80 mm, o = 20°. Determine the forc& and the reaction
forcesR,, Ry (see Fig. 3.33).

4r

s %
UU:
i
Q
=

Figure 3.33: Exercise 3.5.3. Equilibrium of a semiaxle

Solution
Ra, = —300 N, RAy = —8T767N, Ry, = —360 N, Ry, = 8779 N, RBy = 3640 N,
Rp, = —2640N, Rg = 4497 N, S = 2554 N

Exercise 3.5.4 Equilibrium of a stool The stool (see Fig. 3.34) is loaded by the
weight = 800 N of a person sitting eccentrically. The bottom ends of the stool
legs are located uniformly on a circle the radius of whiclRis= 250 mm. The
eccentricityr = 100 mm. Determine the function8, (), Rg(¢), Re(p) for ¢ €<
0°; 360°). Extract the computed values of the reactionsfos 25°.

Solution
Ry =510N, Rg =298 N, Rc = 142N

Exercise 3.5.5 Equilibrium of a rotating crane The rotating crane (see Fig. 3.35)
is loaded by the forc€) = 4 kN. The lengtha = 1.5 m. Determine the values of
the reactionsR,, Rg, Rc as functions of an angle € (—15°;15°). Extract the
computed values of the reactions tor= 9°.

Solution
Ry =8165N, Rg = 1202N, R = 3488 N
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Figure 3.35: Exercise 3.5.5. Equilibrium of a rotating crane

Exercise 3.5.6 Equilibrium of a rod The rod in Fig. 3.36 is loaded by forces
@ = 300 N, G = 200 N. The lengthz = 200 mm. Determine the magnitudes of the
forcessSi, S, in the bars 1, 2 and the magnitude of the reacfign

Solution
S; =1847N, S; =533 N, Ry = 1756 N

Exercise 3.5.7 Equilibrium of a car axle The car axle (see Fig. 3.37) is loaded
by forcesN = 2000 N, 77 = 200 N, 7, = 150 N. The lengths are = 0.1
m,r = 0.35 m. Determine the magnitude of the for6enecessary for equilibrium
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Figure 3.36: Exercise 3.5.6. Equilibrium of a rod

of the axle. Determine also the magnitudes of reaction forces.

Solution
Ray = 0,Rpay = 225 N, Ry = 1369 N, S = 3262 N, R, = —200 N, Rp, =
—375N, R, = 2612 N, R = 2647 N

3.6 Systems of rigid bodies

Static analysis of a system of constrained rigid bodies is based on the following
theorem: if a system of constrained bodies is in equilibrium each member of the
system is in equilibrium as well.

It follows that the equilibrium of the whole system is solved as the equilibrium
of each of its member separately. The system consistinghafdies is substituted
by n "freed" bodies. For each body we follow the standard procedure: We draw the
free-body diagram and we write down the equilibrium equations.

When solving a mechanism with one degree of freedom, we have in mind that
the mobility has to be compensated by an external applied force or couple.
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Figure 3.37: Exercise 3.5.7. Equilibrium of a car axle

Exercise 3.6.1 Equilibrium of the shaping machinel'he mechanism of the shap-
ing machine is loaded by the foréé = 200 N and by a couplé/, = 60 Nm (see
Fig. 3.38). Determine all external reaction forces and the magnitude of the couple
M, needed for the equilibrium of the mechanism in this particular positien45°
when! =08 m,l; =01m,A=028m,h; =0.1mMm,hy =028m,r = 0.1 m,
Iy =0.5m,a=20°.

Solution
The mechanism consists of 5 moving members. We sketch the free-body diagram
and we write down three scalar equation of equilibrium for each of members 2, 4,
6.
Member 2:

S Fiy: Rpa, — Rg cosB = 0
ZFiy . RAy_RB sinﬁ =0
S Mian: Rgrcos(p—p)—My, = 0
Member 4.
S Fiy: —Rp+NjcosB+Rq, = 0
Y Fy: Nysinf+Rey, = 0
ZMiC: RDl4 COSﬁ—N4p+M4 = 0
Member 6:
> Fio: N¢ —F cosae = 0
Y Fy: Rrp + Ry — F sina 0

> Miyw: —Rgl+ F(l;+1/2) sina+ Fhy cosa+ Ngs = 0
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~

Figure 3.38: Exercise 3.6.1. Equilibrium of the shaping machine

We make use of the special loading pattern of members 3 and 5 - there are just two
forces in equilibrium - to write down one equation of equilibrium only:
Member 3:

ZE& . RB — N4 =0
Member 5:

S Fu: Rp—Ng = 0
From geometry we have

r sin ¢ _ hy 41 cost

= arctg————— =
P ghg—l—r costp’ b cos 3

s=h+hy—14 cosf
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Altogether we have a system of 11 linear algebraic equations in the form

Ax=Db
System matriA is

[0 10 —cos 3 0 0 00 0 0 0]

0 01 —sin 3 0 0 00 0 0 0

-1 0 0 rcos(»x —B) O 0 00 0 0 0

0 00 0 cosf -1 10 0 0 O

0 00 0 sin 3 0 01 0 0 O

A=1| 0 00 0 —p lycosp 0 0 0 0 O

0 00 0 0 0 00 1 0 0

0 00 0 0 0 00 0 1 1

0 00 0 0 0 00 s —-10

0 00 1 -1 0 00 0 0 0
| 0 00 0 0 1 00 -1 0 0

Vectorx of unknowns is
[ My Ra, Ra, Rs Ni Rp Rey Rey No Bp Ru |
Vectorb of right-hand side is
[000 000 —My, Fcosa Fsina —F(l;+1/2) sina— Fhy cosa 0 O]T

We solve the system of equilibrium equation using Matlab (see progsa®i1S.m).
Solution
Ry =424TN, Rc = 243.4N, Rg = 8257 N, Ry = —14.17 N, M, = 35.26 Nm

Exercise 3.6.2 Equilibrium of a structure A structure according to Fig. 3.39 is
loaded by the forcé’, = 1000 N and by the couplé/, = 100 Nm. Determine the
magnitudes of reactions.

Solution
Rx =625N, Rg =375 N, Rc = 1151 N, Rp = 786.6 N, R = 258.2 N

Exercise 3.6.3 Equilibrium of the pliers Determine the forcé’ needed for keep-
ing the cylinder by the forc€) = 100 N using pliers. The pliers have the parallel
moving jaws (see Fig. 3.40). Determine the magnitudes of the reactions as well. It
is known thatz = 0.02 m, b =0.04 m,c =0.12m,d = 0.018 m.

Solution
F=25N,Ry =175N, Rg = 125N, Rc =25 N
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Figure 3.39: Exercise 3.6.2. Equilibrium of a structure

Figure 3.40: Exercise 3.6.3. Equilibrium of the pliers

Exercise 3.6.4 Equilibrium of a landing gear mechanisnbetermine the pressure
p in the hydraulic cylinder of the landing gear mechanism shown in Fig. 3.41. The
weight of the wheel ig) = 500 N. Determine the reaction8,, Ry, Rc as well.
We know thatd = 0.04 m,l; = 0.45m,] = 0.8m,h; = 0.15m, h = 0.26 m,
AF =04 m, AG = 091 m, EF = 0.194m, EC = 0.52m,CD = 0.15 m,
0 =120°.
Solution
p=271.7TE4Nm 2 Ry =637.5N, Rz = 3415N, Rc = 3599 N

Exercise 3.6.5 Equilibrium of decimal scaleetermine the forc&Z needed for
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Figure 3.41: Exercise 3.6.4. Equilibrium of the undercarriage

equilibrium of the decimal scales loaded by the fofrésee Fig. 3.42). Determine
the reactiond?g, Rp as well. Solve the problem for two different positions of the
line of action of the forc&), namelyz; = 0.1 m, z, = 0.3 m. It is known that
r=02m,s=0.02m,t=0.08m,n =0.1m,v =0.6 m,Q = 800 N.

r St

.—r\r\c_( D

Figure 3.42: Exercise 3.6.5. Equilibrium of a decimal scales

Solution
Z1 = 8 N, Z, = 80 N, Rg; = 506.6 N, Rps = 240 N, Rg; = 373.3 N,
Rpy, = 640N

Exercise 3.6.6 Equilibrium of a lifting platform Lifting of the platform (see Fig. 3.43)
is controlled by the force in hydraulic cylinder. Determine the magnittiad the
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force in cylinder in the position shown. Determine the reactiBRsRg, R, Rp as
well. We know that =1 m,a = 0.866 m,p = 30°, G = 5000 N.

a

Figure 3.43: Exercise 3.6.6. Equilibrium of a lifting platform

Solution
Z =11547N, Ry =3750N, Rg = 3750 N, Rc = 5908 N, Rp = 7500 N

Exercise 3.6.7 Equilibrium of a hub lifting mechanismA hub lifting mechanism

is loaded by the forc&Z, = 50 N (see Fig. 3.44). Compute the magnitude of
the forceS in spring needed for the equilibrium of the mechanism in the position
shown. Determine reactiors,, Rp as well. Itis known that = 0.15 m, p, = 30°

‘| P
Sty

Figure 3.44: Exercise 3.6.7. Equilibrium of a hub lifting mechanism
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Solution
S =250N, Ry = 250N, Rp =400 N

3.7 Trusses

Trusses are an idealized structures consisting of straight and slender rigid bars
(members of a truss), each of which is pinned to the rest of the structure. We
will limit our attention to the planar trusses, e.g. all bars will lie in one plane. The
weights of the members will be neglected. Forces are transmitted from one member
to another through smooth pins. The consequence of the idealization described is
that members of a truss are so-called "two-force members" which carry only a pair
of equal magnitude, oppositely directed forces along their length. We will discuss
two methods of solution of trusses:

e method of joints
e method of sections

The method of joints is based on the fact that any pin in the truss has to be in
equilibrium. We have two independent equilibrium equation for each pin because
the system of forces is a planar concurrent one. We start the solution with the pin on
which no more than two unknown forces act. We proceed to another such pin until
all unknown forces have been determined. Of course, we can solve all equilibrium
equations at the same time as a system of linear algebraic equation.

The method of sections is based on the idea of a division of a truss into two
separate parts. Each of them is taken as a body. In case the cut is carried out in such
a way that there are three unknown forces. These forces can be found because just
three equilibrium equations are available for a general planar force system.

Exercise 3.7.1 Sample problendsing the method of joints, determine the force
in each member of the truss shown in Fig. 3.45. State whether each member is in
tension or compression. We know thiat 1 m, F; = F; = 1000 N, P = 500 N.

Solution
A free-body diagram of the entire truss is drawn (see Fig. 3.45). External forces
acting on this free body consist of the applied lo&tsF,, P and the reactions at
A and B. The forces in each member are asumed to be positive (tension). We have
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two equilibrium equations for each joint. These equations are

jointA —Rpy + Sy sina =0
Ray + 51+ 59 cosa =0
jointB R, =0
Rg, + S12 =0
jointC —Sy sina — Sg + Sg sina =0
—S19 — Sg cosa+ Sy + Sg cosa =0
jointD P+ Sg+ Sjpsina— Sy sina=0
Se cosao + Sy + Sip cosaa —S; =0
jointE —F, — Sy sinae =0
Sy cosa+ S3=0
jointF Sy —5S3=0
-S11 =0
jointG Sy — Sy — Sip sina =0
—S7 — Sip cosax =0
jointH —S5 — Sg sina =0

—F — Sgcosa=0
If we exclude the trival equations
Rg, =0, S5, =0
we have the set of 14 linear algebraic equations in matrix form

Ax=b
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sa 0
—ca 0
0 0
0 0 |
(3.31)

X = [RAa: RAy RBy Sy Sy S3 Sy S5 Se St Ss So Sio 512}T

b

(00000 -P O F 00000 K]

We solve the matrix equation using Matlab.

[

E| 3 F 4 G 5 H E F 4 G 5 _ H
El N2 |1 7 6 F ' 17
:| 10 VE > 11 1 6 F
P\ 8 P Xix¥ 8 1%
D C Dy - ) y C
1l Y |2 I P
a R A
A A NS
R, R,,
Figure 3.45: Exercise 3.7.1. Equilibrium of a truss
Solution
Ray = 500 N, Ryy = 500 N, Rg, = 0, Rgy, = 500 N, S; = —1000 N,
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S, = —1414 N, S; = 1000 N, S; = 1000 N, S5 = 1000 N, S = —1414 N,
S; =0, =—1500N, Sy = 707N, Sip =0, S1; =0, S1 = —500 N

Exercise 3.7.2 Planar trussUsing the method of joints, determine the force in
each member of the truss shown in Fig. 3.46. State whether each member is in
tension or compression. It is known that = 1500 N, 5 = 2000 N,/ =2 m.

Foo 7 e T

>
>

/ 7 2

Figure 3.46: Exercise 3.7.2. Equilibrium of a planar truss

Solution
S1 =1500N,S, =1500N, S3=0,5, =—-6988 N, S; =1398 N, Sg = 3913 N,
S; = 3500 N, Sg = 1500 N, Sg = —4950 N, S;p = —1750 N, S;; = 0,
Sis = —2121N

Exercise 3.7.3 Equilibrium of a bridge Using the method of joints, determine the
force in each member of the truss shown in Fig. 3.47. State whether members are
in tension or compression. It is known thiat = 500 N, F;, = 1000 N, a = 0.6 m,
a = 30°.

Solution
Ry =803.6 N, Rg = 1010.4N,S; = —1630N,S; = —1630 N, S3 = —1630 N,
Sy =1060N, S5 =0, 5 =395.3N, S7 =790.6 N, Sg =0, Sg =530.3 N

Exercise 3.7.4 Equilibrium of a bridgeUsing the method of joints, determine the
force in each member of the truss shown in Fig. 3.48. State whether members are
in tension or compression. Itis known that = F;, = F3; = F, = F5 = 400 N,
a=0.4m.
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Figure 3.48: Exercise 3.7.4. Equilibrium of a bridge

Solution
Ry =1000N, Rg =1000.4N,S; =—-1118 N,Sy, = —715.5N, S3 = —715.5 N,
Sy = —1118 N, S5 = 500 N, S¢ = 600 N, S; = 500 N, Sg = 313.1 N, Sg =
126.5N, S1p = 126.5 N, S;; = 313.1 N

3.8 Bodies and systems of bodies with friction

The problem ofriction is the problem of a contact force along contacting surfaces.
It is a complex phenomenon and it is difficult to modell it exactly. When solving
problems involving friction to distinguish betweestiding contactand unmoved
contactis essential.

The simplest modell of friction force gives so call€dloumb theorenof fric-
tion. This states that (in case of a relative motion of bodies in contact) the following
is valid for the friction forceF; (kinetic friction)
v

Ff = — Mk N (332)

vl

wherev is vector of the relative velocity of bodies in contact.



CHAPTER 3. STATICS 105

The value of a friction forcé; (static friction) when there is no motion between
surfaces lies in the interval
0 S st S Fm

where
Fn= Hs N

Warning: If the motion is not impendingty: and N should be considered as inde-
pendent unknowns to be determined from the equilibrium equations. Moreover, the
check of the condition

st S s N

must be performed at the end of the solution.
In the above expressions there the following designation is used:
1 coefficient of static friction
i coefficient of kinetic friction
N normal component of the reaction of the surface
The coefficients of friction depend upon the nature and the condition of the
surfaces in contact. They can be found in tables.

3.8.1 Journal bearing

The frictional resistance may be expressed as the magnitude of the ddwptech
is
My; =1y g R (3.33)

where r; isthe radius of the journal
g Is coefficient of kinetic friction in journal
R isreaction of the bearing

3.8.2 Thrust bearing

The frictional resistance of the thrust bearing according to Fig. 3.49 may be ex-
pressed as
2 R3—43
M=-uy————-F
3 Hi R? — r?
where R is outer radius of the bearing
r Isinner radius of the bearing
. 1s coefficient of kinetic friction
F isreaction of the bearing

(3.34)
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Figure 3.50: Rolling resistance

3.8.3 Rolling resistance

The rolling resistance of the wheel according to Fig. 3.50 may be expressed as

M=eN (3.35)

where e isthe coefficient of rolling resistance
N is the normal component of the reaction
Fy is the tangent component of the reaction

3.8.4 Beltfriction

For the tension%; andTs; in two parts of belt or rope slipping around the cylindrical
body shape (see Fig.3.51), the following formula is valid
15

T2 kB
T e (3.36)
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Figure 3.51: Belt friction

where e isthe base of natural logarithm
e 1S the coefficient of kinetic friction
B isthe angle of contact
The angle of contact must be expressed in radians. The @nglay be larger
then2r. If a rope is wrapped times around a post, = 27n.

Exercise 3.8.1 Sample problenThe cam mechanism (see Fig. 3.52) is loaded by
forcesZ = 100 N, G, = 80 N. Derermine the value of a coupld necessary
for equilibrium of mechanism in the position given by= 60°. Further, find the
minimum lengthl,,, for mechanism not to get locked. Given values: OS = 0.03
m,r = 0.05m,A = 0.1 m,/ = 0.05 m,e = 0.03 mn = 0.04 m,; = 0.01 m,
oy = o= 0.1,
Solution
When freeing the particular body we have to keep in mind that the orientation of re-
action forces must be estimated. We will use the orintations according to Fig. 3.52.
Member 3:

ZEx N1—N2—Ff 0
ZF;:ZJ: —Z—FfQ—Ff1+N =0
ZMiA: —Nd+N2(8+l)—Zn—N18 =0
Member 2:
Zﬂyi Ry_N_G2 =0

> Mio: M — My;— (G2 + N)OS cosp — Fr(r+0Ssinp) = 0
Friction forces are:

Fp = |Ni| e Fpo = |No| e Fp=|N|wm

Mkj :leu,kj‘/R%—i‘RZ
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Figure 3.52: Problem 3.8.1. Equilibrium of the cam mechanism

After substitution and some manipulation we have six equations containing 6 un-
knownsN, Ny, Ny, R;, R, M. First we determinéV:

l+2ukn
(1= )l =2 med —2s 12

N=7

and thenM:

M =r; g /(e N)2 + (N +G)2 + (N +G) OS cos ¢ + puy N (r 4 OS sin @)
Geometric relations are:

d=0S cosy s=h—r—0Ssingp

The resultisM =3.69 Nm

The condition for mechanism not to getkedis N — oo. From the denomi-
nator of the expression fav it follows

s i + pucd

[ =2
" 1 — e

) Mk<1
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The result id,,= 0.003 m.

Exercise 3.8.2 Equilibrium of a hand-barrow A hand-barrow (see Fig. 3.53) is
loaded by force&/>,= 15 N,G3= 500 N. Determine the magnitude of a forEeand

the positiony of its line of action as well assuming that the hand-barrow is moving
uniformly in the direction shown. It is known that 0.15 m,/= 1.2 m,/;= 0.4 m,
h=0.15m,3 = 15°, ;= 0.4, 11=0.1,7;= 0.01 m,e= 0.005 m.

v G,

Figure 3.53: Problem 3.8.2. Equilibrium of a hand-barrow

Solution
F = 154.7TN, ¢ = 84.7°

Exercise 3.8.3 Equilibrium of weightsA rope having weights) = 100 N and
Z = 2@ on its ends is thrown over a nonrotating drum and a small pulley at the end
of a rotating lever (see Fig. 3.54). Find such a position of the lever for the uniform
motion of a rope in the direction shown. Further determine the value of a céfiple
acting on the lever in this case. Given d&e= 0.1 m,r = 0.2 m, u, = 0.3. Neglect
the friction between the rope and pulley.

Solution
¢ =192.38°, M = 9.54 Nm

Exercise 3.8.4 Equilibrium of a belt sawA belt-saw (see Fig. 3.55) is prestressed
by a forceS, so as to prevent against slippage of a belt. Find the minimal &lye
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Figure 3.54: Problem 3.8.3. Equilibrium of weights

if a cutting forceO = 100 N, radii of wheels are = 0.2 m, radii of journals are

r; = 0.02m, p; = 0.3, and coefficient of static friction between belt and wheel is
e = ps = 0.2. Further determine the value of a coupleacting on the bottom
wheel.

T

Figure 3.55: Problem 3.8.4. Equilibrium of a belt saw

Solution



CHAPTER 3. STATICS 111

Smin = 253.7N, M = 23.6 Nm

Exercise 3.8.5 Equilibrium of a plateA plate having weight) is held in its po-
sition by a slender rod which can rotate at point A. Determine the maximal value
of the anglen (see Fig. 3.56) for the plate of arbitrafyto be in rest. Given are:
[=0.3m,u, = pus =0.15,G =15N.

1

NN

Figure 3.56: Problem 3.8.5. Equilibrium of a plate

Solution
a = 8.53°

Exercise 3.8.6 Equilibrium of a brake drum A brake drum weightings = 150 N
rotates clokwise and is loaded by a couple= 400 Nm (see Fig. 3.57) . Determine
the value of a forceP for the uniform rotation of the drum. It is known that=
0.25m,l=08m,h=0.5m,p = 0.3, f; = 0.05,r; =0.02m.

Solution
P =214.7N

Exercise 3.8.7 Equilibrium of aroller The roller for tennis court moves uniformly
in the direction shown (see Fig. 3.58). Determine the value of a fbremd the
direction of its line of action. Further find the value of the reaction force between
the roller and ground and check the condition for a rolling. GivenGare 50 N,
Q = 70N, r =02m,r = 0.02m,! =075 m, 5 = 0.1, ps = 0.3,
e=0.03m, s = 30°.

Solution
F=1158N, ¢ =40.83°, N = 7243 N, F;y = 87.6 N
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Figure 3.58: Problem 3.8.7. Equilibrium of a roller

3.9 Centre of gravity

The centre of gravity of a rigid body is the point C where a single fdiCealled the
weight of the body may be applied to represent the effect of the Earth’s attraction in
any orientation of the body.

In case of a homogeneous body the centre C of gravity coincides with the cen-
troid of the volumel” of the body. The coordinates, yc, z¢ of the centroid are
defined by the relations

ch:/a:dV, ch:/de, ZcV:/de (3.37)
V) ) V)

When a body may be divided infgarts having particular centroid$(xc;, yci, 2ci)
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and volumed/;, the coordinatesc, yc, 2c of the whole volumd’” = "V} are de-
fined by the relations

eV =) oV, yeV=> vV V=Y uV (3.38)

The same density of particular parts is supposed.
The coordinates of the centroid C of an area or line are defined accordingly. For
an area A the following relations are valid:

ch:/di, ycA:/ydA, ZCA:/ZdA (3.39)
(4) (A) (A)

For a line | the following relations are valid:

xcl:/:vdl, ycl:/ydl, zcl:/zdl (3.40)

() ) O]

The determination of the centroid C is simplified when the line, area or volume
possesses certain properties of symmetry.

If the area or line is symmetric with respect to an axis, the centroid C will lie
on that axis. If it is symmetric with respect to two axes, C will be located at the
intersection of the two axes.

If it is symmetric with respect to a centre O, C will coincide with O.

If a volume possesses a plane of symmetry, its centroid C will lie in that plane.
If it possesses two planes of symmetry, C will be located on the line of intersection
of the two planes. If it possesses three planes of symmetry intersecting at one point
only, C will coincide with that point.

Exercise 3.9.1 Sample probleniocate the centroid of the semicircular area ac-
cording to Fig. 3.59. Locate the centroid of the boundary line as well.

Solution
Using eq.3.39 we have

N e
[ydA  [dz [ ydy
yo = 2 = 0 _ o424
A mr? 3T

[\

The centroid of the boundary line is located paxis due to symmetry. Itg:
coordinate we compute from the expresion

_ Yo I +yc2ls

ye I+ 1y
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0 X dx G X

Figure 3.59: Exercise 3.9.1. Center of the area

Whereh =2r,ly, = 7r, Yoo = 0,

Jydl  [rsinprde
L 0 2

Yor = = =—r=0.637r
I mr T

Therefore
B %r-wr+0-2r_ 2r — 0.389
ye = Tr + 2r T 4+2 "

Exercise 3.9.2 The centroid of a flywheerlhe centroid of the flywheel should be
located in the vertex of the cone (see Fig. 3.60). Determine the hemjtthe cone.

Ay

O r -

Figure 3.60: Exercise 3.9.2. The centroid of a flywheel

Solution
h=5b(2-+2)=0.58b m
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b X

Figure 3.61: Exercise 3.9.3. The centroid of a wire

Exercise 3.9.3 The centroid of a wird_ocate the centroid of a wire the shape of
which is shown in Fig. 3.61. The lengths are- 0.050 m, b = 0.04 m.

Solution
o =yc = 0.0334 m

Exercise 3.9.4 The centroid of a stampingLocate the centroid of an area shown
in Fig. 3.62 and locate the centroid of the boundary line as well. It is known that
a=0.07m,b=0.04m,r =0.025 m.

y

0) a X

Figure 3.62: Exercise 3.9.4. The centroid of a stamping

Solution
Tcarea = 0.02714, Ycarea = 0.01343 M, Zccony = 0.02966, yceont = 0.01389 m
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Exercise 3.9.5 The centroid of a rivet Locate the centroid of the rivet shown in
Fig. 3.63. It is known that = 0.03 m, h = 0.06 m,d = 0.04 m.

Y
r

h 0\d
O X

Figure 3.63: Exercise 3.9.5. The centroid of a rivet

Solution
Tc=0,yc =0.0476 M, 2c =0

Exercise 3.9.6 The centroid of a plat®etermine the diametef; of a hole which
must be bored for the centroid to be locatedyaxis (see Fig. 3.64). We know that
d=02m,h=0.05m,h; =0.04m,z; = 0.05m.

Solution
d; = 0.0583 m

3.10 Internal forces in a body

The internal forces in a section of a body are those forces which hold together two
parts of a given body separated by the section. Both parts of the body remain in
equilibrium. It follows that internal forces which exist at a section are equivalent to
all external forces acting on the particular part of the body.

All internal forces in the section are usually replaced by a force-couple system
F;, M; in the centroid C of the cut K. (see Fig.3.65). The foReconsists of the
axial forceNN (its line of action is perpendicular to the plane K asiearing force
V lying in the plane K. Accordingly, coupl®1, consists of two components the
first of which is referred to as therqueT (its line of action is perpendicular to the
plane K) and the second is called tending momen¥l, lying in the plane K.

Now, we will restrict our attention to the case in which a body is loaded in
just one plane. Moreover we will analyze the internal forces in a very common
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N

&

Figure 3.65: Internal forces in a body

engineering structure which is referred to dseam Beams are usually long straight
slender prismatic members designed to support transversal loads. The loads may
be either concentrated at specific points, or distributed along the entire length or
a portion of the beam. We will limit our analysis to beams which are statically
determinate supported. The aim of an analysis is to obtain Sheard bending
momentM in all cuts K of the beam.

First we determine the reactions at the supports of the beam. Than we cut the
beam at K and use the free-body diagram of one of the two parts of the beam.
We adopt the sign convention according to Fig. 3.66. The result of our analysis
should be a shear diagram and bending moment diagram representing the shear and
the bending moment at any section of the beam. For doing so we use so called
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Schwedler theorem saying

+V

o R

+V

left part right part

Figure 3.66: Internal forces in a beam

dV dM
- _ - = 41
dz o dz v (3.41)
where w isthe distributed load per unit length assumed positive if directed
downwards

V' isthe shear
M is the bending moment
x isthe coordinate of the cut oriented from left to right.
We note that the cuts of the beam where the bending moment is maximum or
minimum are also the cuts where the shear is zero.

Exercise 3.10.1 Sample problemThe beam of the lenght = 0.7 m is shown
in Fig. 3.67. It is loaded by the forcE = 400 N and by partly non-uniformly
distributed load characterized lay = 50 Nm™' andw, = 400 Nm™'. The angle
a = 45°. Determine inner forces at section A-A.

Solution
First we determine the forc€ in the rope. The free-body diagram is shown in
Fig. 3.67. The distributed loads are substituted by forces

12

They act in the centroids of the respective areas.
The moment equilibrium equation with respect to B yields
: [ 21 [
[Ssina— W) — —Wy—-F =0 (3.43)
2 9 3
and the result i$' = 242.67 N.
Second we use the free-body diagram of the right-hand part of the beam (see
Fig. 3.67) for determining the internal forcég Vv, M.
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Figure 3.67: Exercise 3.10.1. Internal forces in a beam

We have ) 111
Wlmzﬁlwl, W;:§6l1w2
and - for the section A-A -
N = Scosa=171.56 N
V. = Ssina—W?—-W7=14823 N

M, = LSsina—LtWr—111Wy =56.76 Nm

Third we construct shear and moment diagrams according to definitions (see
Fig. 3.67). The maximum value of the bending mom&fy,.. = 34.83 Nm occurs
in the section wher& = 0, namely wherer = % = 0.2 m from the left side.

Exercise 3.10.2 Internal forces in a beanThe simply supported beam (see Fig. 3.68)
has the lengtlh = 0.6 m, « = 0.2 m. Itis loaded by the forcé" = 200 N, by the
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torqueM = 20 Nm, and by uniformly distributed loadh = 100 Nm™".

Determine the shear and moment equations for the beam. Draw shear and moment
diagrams. Indicate the section where the bending moment reaches its maximum
value.

F mw
A Y | L B WM
1/3]

V2l

Figure 3.68: Exercise 3.10.2. Internal forces in a beam

Solution
= 0.2m, Mynax = 34.83 Nm.

Exercise 3.10.3 Internal forces in a beanrhe beam shown in Fig. 3.69 is loaded

by the forcesF; = 400 N, F; = 500 N, by the torqueM = 90Nm, and by

the distributed loady = 5000 Nm *. Further we knows = 0.3 m, a = 30°.

Draw shear and moment diagrams. Indicate the section where the bending moment
reaches its maximum value and compute it.

A”%Wm SOV

a aJ’a%a

I —

Figure 3.69: Exercise 3.10.3. Internal forces in a beam

Solution
x=0.193m, My = 93.44Nm !

Exercise 3.10.4 Internal forces in a beanmrhe beam shown in Fig. 3.70 is loaded

by the torquelM = 60 Nm, by uniform distributed loads; = 400 Nm™', and by
linearly distributed loadv, = 1066 Nm *. The lengthl = 0.3 m. Draw shear

and moment diagrams. Indicate the section where the bending moment reaches its
maximum value and compute it.
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Figure 3.70: Exercise 3.10.4. Internal forces in a beam

Solution
x=0.3mM, Mynax = —48 Nm

Exercise 3.10.5 Internal forces in a beaniThe beam shown in Fig. 3.71 is loaded

by linearly distributed loads, = 1000 Nm™'. The lengtha = 0.1 m. Draw shear

and moment diagrams. Indicate the section where the bending moment reaches its
maximum value and compute it.

A B

SR,

Figure 3.71: Exercise 3.10.5. Internal forces in a beam

Solution
z=0.43 M, Mypax = 23.59 Nm

Exercise 3.10.6 Internal forces in a beamrhe simply supported beam according
to Fig. 3.72 is loaded by sinus-shape distributed load. It is known/tkab.7 m,
wo = 800 Nm~'. Draw shear and moment diagrams. Indicate the section where the
bending moment reaches its maximum value and compute it.
Solution
x=0.35m, Mypax = 39.72Nm

3.11 Work and potential energy

Consider a forcé' acting on a particle. The infinitesimal mechanical work d
corresponding to an infinitesimal displacemental a particle is defined as the
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Figure 3.72: Exercise 3.10.6. Internal forces in a beam

scalar product
dU =F -dr (3.44)

Denoting respectively by’ = |F| and & = |dr| the magnitude of the force and
the magnitude of displacement, anddyhe angle formed b¥ and d-, we have

dU = F'ds cosa (3.45)

The work d” is a scalar quantity and is positiverif< 90°, zero ifa = 90° and
negative ifa: > 90°.
Accordingly we define the infinitesimal work of a couple of mombftacting
on a rigid body as
dU =M -de (3.46)

where dp is an infinitesimal angle expressed in radians through which the body
rotates.

The work corresponding to a finite displacement of the point of application of
the forceF may be obtained by integration

52

U:/F-dr:/F cosads (3.47)

S1

or (if M and dp are parallel vectors)
P2
U= / M dy (3.48)
P1

Special attention should be paid to the work of the weMhof a body of which
the center of gravity moves from the heightto z, (see Fig. 3.73).
The work forz, > z; IS

]
Ur,sn, = — / Wdz=W(z; — 29) (3.49)
Z1
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Figure 3.73: Mechanical work of the for¢g

The work of W is positive when the elevationdecreases.
When the work of a forc® is independent of the path actually followed between
A; andA,, the force is said to be a conservative force and its work may be expressed
as
Uny—a, = Va1 = Vaz (3.50)

whereV is the potential energy (an ability to exert work) associated Witland
Va1 andVy, represent the valuds at A; andA,, respectively.
It follows that the potential energy associated with the foweof gravity is
generally
V=Wz (3.51)
It is clear that forcéW of gravity is conservative.

Another conservative force is that of a spring. The work of the fdfce £ x
exerted by a linear spring on a body (see Fig. 3.74) is

€2

1
Un,ny, = —/kxdx =5 k(z7 — x3) (3.52)
T
The work is positive when the spring is returning to its undeformed position.
It follows that the potential energy associated with the elastic fbrie

1
V= 3 k 2* (3.53)

Exercise 3.11.1 Sample problemA force S acts horizontally on the bar (see
Fig. 3.75). The force moves the bar slowly from its initial position to the verti-
cal position. Determine the mechanical work of the foft¢aking into account
friction. We know that =2m,r=1m,Q = 5N, pu; = 0.2.
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Figure 3.74: Mechanical work of the spring

Solution
First, we sketch the bar in a general position and free it according to Fig. 3.75. The
work of the forceS is

Equilibrium of the bar requires

S —Fp —Fpycosp—Nysing = 0,
Ni—Q+ Ny cosp— Frasing = 0,

[
Ny s cosgo—Q§ cosp = 0

The friction forces are

Fri = Ny e, Fpo = Ny

and
’

singp = —
S
After substitution and some manipulations we have

[r 1
S:Q/'Lk+QT(1+/'Lk2)_2
S
wheres denotes the current position of the bar. The work of the force
r [r 1
W = — / {QMkJrQT(lJFMkQ)S—Q ds
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[
WSZQMk (m—T)—f—Q% (1+/~Lk2) (%—7742;_'_12)

Substituting the given numerical values we have the result

Wg = 4.11055 Nm

Figure 3.75: Exercise 3.11.1. Mechanical work of the fafce

Exercise 3.11.2 Mechanical work of a couplélhe couplelM acts on a drum with
a rope wound on it (see Fig. 3.76). The end of the rope is connected to a spring
which is stretched. Determine the waK done by the couplé/ when the spring
length is changed about the length= 0.1 m. The weight of the drum & = 180 N,
the radius of the drum is = 0.08 m. Take a friction into consideration. The radius
of a journal isr; = 0.015 m, coefficient of friction in the journal ig,; = 0.05, and
the spring stiffness is = 3000 N/m.
Solution
W =153 Nm

Exercise 3.11.3 Mechanical work of a coupleDetermine the work of a couple
M acting on a screw that presses down a spring about a léngth).03 m (see
Fig. 3.77). The weight of the screw is neglected. The unstressed length of the
springisly = 0.1 m, the spring stiffness is = 20000 N/m, the screw-thread is flat,
the thread pitch isx = 10°, the thread friction igy, = 0.05.
Solution
W =11.6 Nm
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Figure 3.76: Exercise 3.11.2. Mechanical work of the couyle

Figure 3.77: Exercise 3.11.3. Mechanical work of a coule

Exercise 3.11.4 Mechanical work of a forceDetermine the work of a forc#
which is necessary to raise the bob from its equilibrium position to the hgjght
0.2 m (see Fig. 3.78). The line of action of the forBe&eeps its horizontal position.
The weight of the bob i&F = 10 N, the unstretched length of the springljs=
0.3 m, the stiffness of the spring is= 100 N/m.

Solution
W =6 Nm

Exercise 3.11.5 Mechanical work of a forceA cylinder having the weight: =
300 N moves under a plate the weight of which()s = 500 N (see Fig. 3.79).
Determine the work of a forc8 acting on the drum centre which is necessary for
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Figure 3.78: Exercise 3.11.4. Mechanical work of a fafte

moving the drum through the length The coefficient of friction and the coefficient
of adhesion between the plate and the drum and between the drum and ground are
the same, namely, = ps = 0.3. The lengthr = 0.1 m, e=0.01 m.

3r 3r
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Figure 3.79: Exercise 3.11.5. Mechanical work of a fasce

G,

7

Solution
W = 203.1 Nm

Exercise 3.11.6 Mechanical work of a forceA cylinder having eccentric centre
of mass moves to the right under influence a farcgsee Fig. 3.80). Determine the
work of a forceP which is necessary to move the cylinder about the lehgth m.
The weight of the cylinder i§) = 80 N, the radius isr = 0.3 m, the coefficient
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of friction and the coefficient of adhesion between the cylinder and ground is the
same, namely,, = ps = 0.25. The original position of the cylinder can be seen on
Fig. 3.80. The resistance against rolling is neglected.

G
/\d

Figure 3.80: Exercise 3.11.6. Mechanical work of a faFte

Solution
W = 18.47 Nm

3.12 Principle of virtual work

A virtual displacements of a point is any arbitrary infinitesimal change in the
position of the point consistent with the constraints imposed on the motion of the
point. This displacement can be just imagined.

Virtual work 5U done by a force is defined & ds.

Virtual work 5U done by a couple is defined 37 5.

The principle of virtual work(pvw) can be used in statics for solution of equi-
librium problem. The following is valid:

The necessary and sufficient condition for the equilibrium of a particle is zero
virtual work done by all working forces acting on the body during any virtual dis-
placements consistent with the constraints imposed on the patrticle.

The necessary and sufficient condition for the equilibrium of a rigid body is zero
virtual work done by all external forces acting on the particle during any virtual
displacements consistent with the constraints imposed on the body.

When using the principle of virtual work for a system of connected rigid bodies
(mechanism) we must keep in mind that no virtual work is done by internal forces,
by reactions in smooth constraints, or by forces normal to the direction of motion.
The virtual work is done by reactions when friction is present.
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Exercise 3.12.1 Sample problenlJsing pvw determine the magnitude of a force
Z for equilibrium of a crank-slider mechanism in the position given by the angle
¢ = 30°. GivenisM =50 Nm,QQ =35 N, =0.1 m.

¢ y | E
M(v vQ bli‘ . %

N
A4\
N

L

Figure 3.81: Exercise 3.12.1. Equilibrium of the crank-slider mechanism

Solution
First we denote the position of points of action of applied folQeg and the posi-
tion of the crank by coordinates z, y. According to pvw we can write

—Mdép—Qdéy—Z6z=0

where
_ T ) :Ccos )
Y 25111@; Y 5 Yoy
z=rcosp+ri/4—sin®p+b, dz = —r sing 1+% dp -
4 —sin®
Fordp # 0 we have
7 M+ @ 5 cosp :50—|—35-0,05-c0s30°
: cos . cos 30°
r sin @ <1+4\/m) 0,1 0,5(14——\/@)
The resultis
Z =T711.92N

Exercise 3.12.2 Equilibrium of a mechanismUsing pvw determine the magni-
tude of a couplel acting on the crank when the position of a mechanism (see
Fig. 3.82) is given byy = 30°. We know thatF" = 300 N, o = 45°, Z = 900 N,
r=0.04 m.

Solution
M = 42.8 Nm
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Figure 3.82: Exercise 3.12.2. Equilibrium of a mechanism

Exercise 3.12.3 Equilibrium of a car hoodA car hood (see Fig. 3.83) isin equlib-
rium position given byy = 30°. Determine the stiffnedsof a spring the free length
of which isly = 0.07 m. Itis known thatZ = 50 N, » = 0.1 m. Use pvw.

e E——
~
N

Figure 3.83: Exercise 3.12.3. Equilibrium of a mechnism

Solution
k = 8333 Nm™'

Exercise 3.12.4 Equilibrium of a mechanism of a front wheel suspensioA car
wheel suspension (see Fig. 3.84) is loaded by a faree 2500 N. The spring has
a free length, = 0.1 m. Using pvw determine the stiffnegsof the spring. The
lengthr = 0.28 m and the angles are = 60°, « = 55°. Determine the stiffness of
a spring the free length of which i = 0.07 m. Use pvw.
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Figure 3.84: Exercise 3.12.4. Equilibrium of a mechanism of a front wheel suspen-
sion

Solution
k = 34509 Nm ™!

Exercise 3.12.5 Equilibrium of a bridge The equlibrium position of a draw bridge
(see Fig. 3.85) is given by = 30°. Using pvw determine the value of a couplé
acting on drum. Itis known that= 0.1 m,/ = 4.5 m, @ = 5000 N.

Figure 3.85: Exercise 3.12.5. Equilibrium of a bridge

Solution
M = 250 Nm



